
Journal of Sound and <ibration (2001) 248(5), 925}953
doi:10.1006/jsvi.2001.3852, available online at http://www.idealibrary.com on
VIBRATION TRANSMISSION THROUGH AN ISOLATOR
MODELLED BY CONTINUOUS SYSTEM THEORY

S. KIM AND R. SINGH

Acoustics and Dynamics ¸aboratory, Department of Mechanical Engineering and ¹he Center for
Automotive Research, ¹he Ohio State ;niversity, Columbus, OH 43210-1107, ;.S.A.

E-mail: singh.3@osu.edu

(Received 19 February 2001, and in ,nal form 15 June 2001)

This article focuses on the #exural motion of an elastomeric isolator but the longitudinal
motion is also considered. The continuous system theory is used to describe mobility or
sti!ness characteristics and power-based vibration isolation measures. The scope of this
study is limited to the frequency domain analysis of a linear time-invariant (LTI) system with
a single isolator that is placed between a rigid body and a "nite or in"nite beam receiver. The
upper limit of the frequency range is 4 kHz. Two types of solutions to the Timoshenko beam
for a rubber material are critically examined, and the Timoshenko and Euler beam solutions
are compared for vibration power measures. Our analysis shows that the shear deformation
and rotary inertia must be considered in order to properly describe a thick isolator that
e!ectively transmits #exural motions at higher frequencies. The shear deformation e!ect is,
however, found to be more pronounced as evaluated by the power-based vibration isolation
measures at higher frequencies. Further, the roles of isolator parameters such as the static
sti!ness ratios, shape factors and material properties are investigated. The continuous
system theory clearly accounts for the cross-axis coupling terms and it may be further
utilized for optimizing vibration isolation schemes over a wide range of frequencies.

( 2001 Academic Press
1. INTRODUCTION

Vibration isolators are often characterized as discrete elastic elements, with or without
viscous or hysteritic damping [1}4]. The compressional sti!ness term is typically used to
develop isolation system models [2}4] though the transverse (shear) and rotational
components are also sometimes speci"ed or included [5}7]. Additionally, at higher
frequencies, inertial or standing wave e!ects occur within the isolator [8, 9]. Nonetheless,
the isolators are still modelled by many researchers in terms of spectrally invariant discrete
sti!ness elements without any cross-axis coupling terms [5}7]. Such descriptions are clearly
inadequate at higher frequencies. Consequently, one must adopt the distributed parameter
approach. It is the main focus of this article.

Only a few articles have examined the elastomeric devices using the continuous vibration
system theories [10}15]. For example, the longitudinal sti!ness of an isolator has been
described by the wave equation to characterize the material property of an isolator [13].
Also, rubber-like material has been modelled using the wave closure relationship [14]. The
Euler beam theory has been adopted to describe the #exural motions of a mount for an
active vibration control system [10, 11] and to characterize an isolator [12]. However, no
prior article has examined the shear deformation and rotary inertia e!ects of an isolator.
Further, the in#uence of component parameters on the behavior of an isolation system has
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926 S. KIM AND R. SINGH
been investigated using a standing wave description in the longitudinal direction and
a static sti!ness term in the #exural direction [14]. Yet, the frequency-dependent
characteristics of an isolator have not been considered in the previous isolation studies. This
article proposes to overcome this particular void in the literature.

2. PROBLEM FORMULATION

Vibration transmitted via multi-dimensional motions of an isolator is conceptually
shown in Figure 1 in the context of source, path (isolator) and receiver. A rigid body is
employed for the source and the receiver is modelled using two alternate formulations: an
in"nite beam and then a "nite beam with "xed boundary conditions. The analysis focuses
on the #exural motion of the isolator but the longitudinal motion is also considered.
Though both are assumed to be uncoupled within the isolator, coupling will arise because of
the receiver dynamics. Harmonic force and moment excitations are applied at the mass
center of source. The scope of this study is strictly limited to the frequency domain analysis
of a linear time-invariant (LTI) system with a single isolator that is placed between a rigid
body and #exible receiver. Complicating e!ects such as isolator pre-load, temperature
dependence and the like are not considered. Primary objectives of this study are as follows.
(1) Develop the frequency response characteristics (mobility or sti!ness) of an isolator based
on the continuous system theory that includes Timoshenko beam (in the transverse
x direction) and the longitudinal (y) wave equation formulation. In particular, critically
examine the two types of solutions to the Timoshenko beam for a cylindrical rubber
material. (2) Compare the Timoshenko and Euler beam solutions for the e!ects of shear
deformation and rotary inertia of an isolator on vibration power attenuation measures. (3)
Investigate the role of isolator parameters such as the static sti!ness ratios, shape factors
and material properties on isolation measures over a broad range of frequencies.

3. FLEXURAL MODEL OF ISOLATOR USING TIMOSHENKO BEAM THEORY

3.1. MOBILITIES OF A FINITE TIMOSHENKO BEAM

The classical Timoshenko beam theory that describes the e!ects of shear deformation
and rotary inertia has been well studied by many researchers [4, 16}18]. The literature
shows that there are two types of solution and two modal functions that exist at high
frequencies [4, 16]. However, the high-frequency solution has been ignored by many since
this phenomenon has been believed to occur only at extremely high frequencies [4]. Only
a few studies have been conducted to examine the dispersion and spectrum relations of the
Timoshenko beam structure at high frequencies [17, 18]. In our study, we examine this issue
and the harmonic response of an elastomeric beam with free boundary conditions. It is
assumed that the shear modulus (G) is very low, which is true for a rubber-like material.
Further, the characteristic mobilities are obtained for a semi-in"nite beam. The governing
equation for an unforced and undamped Timoshenko beam (in #exure) is expressed as
follows where E is the Young's modulus, I

S
is the area moment of inertia, S is the section

area, o is the mass density and i is the shear constant [4, 16]. Also, refer to Appendix A for
the identi"cation of symbols.
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Figure 1. Vibration transmission via multi-dimensional motions of an isolator. (a) System con"guration with
a beam receiver; (b) a cylindrical isolator with static sti!ness components used for parametric studies. Here, K

Sy
is

the axial (longitudinal or compressional) sti!ness, K
Sx

is the lateral (shear) sti!ness and K
Sh is the rotational

sti!ness.
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Assuming XM (y, t)"X (y)e+ut, the equation for X(y) is
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Here, k is the #exural wave number given by k4"u2oS/(EI
S
) and r

g
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S
/S)1@2 is the radius

of gyration. The above equation is rewritten by introducing non-dimensional parameters
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Equation (3) is a linear ordinary di!erential equation of the fourth order, and has four roots
(j) given by X(m)"Ae(jL)m, where A is an arbitrary constant. Substitution of the assumed
exponential solution into equation (3) leads to the following characteristic equation and two
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categories of roots [16]:

(j¸)4#[k¸]4[t
1
#t

2
](j¸)2#[k¸]4[[k¸]4t

1
t
2
!1]"0, (4a)

(j
1
¸)2"

!(k¸)4 (t
1
#t

2
)!J(k¸)8(t

1
!t

2
)2#4(k¸)4

2
, (4b)

(j
2
¸)2"

!(k¸)4 (t
1
#t

2
)#J(k¸)8(t

1
!t

2
)2#4(k¸)4

2
, (4c)

(j
1
¸)2#(j

2
¸)2"(k¸)4(t

1
#t

2
), (j

1
¸)2(j

2
¸)2"(k¸)4[(k¸)4t

1
t
2
!1]. (4d, e)

The (j
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¸)2 root is always negative but the (j
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following relationship:
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Therefore, when R'1, solutions are expressed only in the trigonometric form. Otherwise,
for R(1, solutions must be expressed using both trigonometric and hyperbolic forms. It is
believed that the R'1 case is related to an extremely high-frequency phenomenon, and
thus previously not considered to be of any practical interest in structural dynamics [4].
However, our study for a rubber-like material shows that the transition for this occurs at
moderately high frequencies. The solution changes at the transition frequency u

T
, that is

u
T
"JiSG/(oI

S
). (6)

The steady state response in #exural motion for the case when R(1 is
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In the above expressions, the following parameters are introduced:
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Next, for the case when R'1, the steady state response in #exural motion is
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The following parameter is used in equations (9a, b) along with equation (8a):
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Note that the (q¸)2, (e
1
¸)2 and (e

2
¸)2 are positive for an undamped structure. Hence, the

arguments of trigonometric and hyperbolic terms in equations (7b) and (9b) remain real
valued. Therefore, the decaying near"eld components do not appear in the solution for the
R'1 case. Conversely, the solution for the R(1 case consists of both propagating and
near"eld wave components. For a damped structure, it is more convenient to employ the
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following general expression along with equations (4b, c) without separating the two cases
since the expansion of exponential terms with a complex argument becomes tedious:

X(m)"Ae*(j1L)m+#Be~*(j1L)m+#Ce*(j2L)m+#De~*(j2L)m+. (11)

The harmonic responses are obtained by applying the following boundary conditions:
a harmonic force f

0
e+ut is applied at y"0 and the other end (y"¸) is free.
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Further, we simplify the above equations (12a}d) as
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Only the slope h
B

due to bending is considered since the shear deformation does not
produce any rotation:
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Like the harmonic force excitation case, replacing the right-hand sides of equations (13a)
and (13b) by 0 and q

0
, respectively, yields steady state responses when a harmonic moment
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q
0
e+ut is applied at y"0. In a similar manner, the driving point and transfer mobility

components for the case of force and moment excitations at y"¸ can be obtained by using
the following reciprocity and physical symmetry conditions:
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Here, the subscripts 0 and ¸ imply response or excitation at y"0 and ¸ respectively.
Further, v and w are the translational and rotational velocity amplitudes respectively. The
resulting mobility matrix that incorporates the "nite Timoshenko beam can be directly used
to determine the harmonic response of any combined system by using the mobility synthesis
formulation. Note that the mobility synthesis method uses free boundary conditions for
sub-systems [19].

3.2. CHARACTERISTIC MOBILITIES OF A SEMI-INFINITE TIMOSHENKO BEAM

It is of interest to observe the behavior of a semi-in"nite Timoshenko beam since the
mobility of a "nite Timoshenko beam shows a completely di!erent tendency for the second
type of solution at higher frequencies when compared with lower frequencies. Rewrite
equation (3) using the parameters t
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Similar to the "nite beam case, it is more convenient to adopt the following solution for
a damped semi-in"nite structure:
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For the case when R(1, the harmonic response for a semi-in"nite beam is
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Next, when R'1, the harmonic response is
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The characteristic mobilities of a semi-in"nite Timoshenko beam are obtained by applying
the force and moment excitations to equation (18a) at y"0:
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3.3. TYPICAL MOBILITY SPECTRUM

The e!ects of shear deformation and rotary inertia on the characteristic mobilities for
a semi-in"nite rubber beam are examined and shown in Figure 2. Calculations are also
conducted by letting t

2~
"0 in equations (21a}c) for a Euler beam with shear deformation

only and by letting t
1~

"0 for a Euler beam with rotary inertia only. The example case
considers a rubber beam with circular shape. The spectrally invariant material properties
and dimensions of the beam that is considered as an isolator are shown in Table 1. It is
observed from Figure 2 that the inclusion of shear deformation increases the magnitudes of
force and moment mobilities. Conversely, the rotary inertia decreases the magnitudes of
force and moment mobilities. Further, the shear deformation does not a!ect the coupling
mobility of Figure 2(b) that is frequency-invariant for the Euler beam model and the one
with shear deformation only. For this circular rubber beam, u

T
is approximately 1)7 kHz

and the nature of the solution changes beyond this transition. Beyond u
T
, the characteristic

force and moment mobilities of the Timoshenko beam model remain frequency-invariant as
the frequency increases, unlike the Euler beam model. Further, the coupling mobility
decreases by the rotary inertia e!ect and one of the Timoshenko beam solution decreases
more rapidly beyond u

T
. Also, the coupling mobilities of the Euler beam with or without

shear deformation are the same as shown in Figure 2(b). The transfer mobilities of a "nite
circular rubber beam are also computed using the material properties and dimensions of the
isolator in Table 1, as shown in Figure 3 for loss factors (g) 0)001 and 0)3. Unlike the transfer
mobilities of the Euler beam, anti-resonances appear in the Timoshenko beam case as
shown in Figure 3. Similar to the characteristic mobilities of a semi-in"nite Timoshenko
beam, the characteristics of force and moment mobilities for a "nite beam remain
frequency-invariant. The coupling mobility of a "nite beam, however, decreases in an
asymptotic manner as the frequency increases beyond u

T
, as shown in Figure 3.

4. VIBRATION POWER TRANSMITTED TO AN INFINITE BEAM RECEIVER

4.1. SYSTEM CONFIGURATION

The vibrational behavior is examined for an isolation system (Figure 1(a)) with an in"nite
beam receiver. Harmonic excitation is applied at the mass center of a cubic rigid body.
A circular isolator is shown in Figure 1(b) along with vibration components transmitted
through the path. The isolator is modelled using the Timoshenko beam theory (#exural
motion) and the wave equation (longitudinal motion). Note that the coupling mobility does
not exist for an in"nite beam receiver. However, a coupling arises because the motion (or
force) in shear direction of an isolator is coupled with the longitudinal direction of a receiver



Figure 2. Characteristic mobilities of a semi-in"nite beam. (a) Force mobility Dv/f D; (b) coupling mobility Dv/qD;
(c) moment mobility Dw/qD: **, Timoshenko beam; s, Euler beam with shear deformation; - - - - -, Euler beam
with rotary inertia; } - } - }, classical Euler beam. Here, u

T
is 1700 Hz.
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beam. The following measures of vibration isolation performance are examined: (1) total
vibration power (P) transmitted to receiver; (2) transmission e$ciency (C"ratio of
transmitted power to input power); and (3) e!ectiveness of vibration power (N"ratio of the
net transmitted power with mount to the net transmitted power without mount). Steady
state responses of an isolator path for axial (y) and #exural (x and h) motions are,
respectively, as follows where the subscript P implies the isolator path. The second subscript
gives the direction x or y. Further, A, B, C and D are arbitrary constants and k

PL
is the

longitudinal wave number of the isolator path.
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TABLE 1

Material properties and dimensions of source, isolator and receiver system

Property or Source Isolator: baseline Receiver
dimension (cubic rigid body) (circular beam) (rectangular beam)

m (kg) 1 * *

E (MPa) * 16)2 6)688]104
G (MPa) * 5 *

g * 0)3 0)001
o (kg/m3) * 1000 2723
Dimensions in mm ¸"50 ¸"30 ¸"670 ("nite beam)

r"12 b"100 and t"10
("nite or in"nite beam)

Figure 3. Transfer mobilities of a "nite Timoshenko beam with free boundaries. (a) Force mobility Dv/f D;
(b) coupling mobility Dv/qD; (c) moment mobility Dw/qD: **, g"0)001; } - } - } -, g"0)3. Here, u

T
is 1700 Hz.
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Also, harmonic responses of an in"nite beam for axial (x) and #exural (y) motions are,
respectively, as follows where the subscript R denotes the receiver beam. The second
subscripts R and ¸ in equation (23) are used for the right-travelling and the left-travelling
waves, respectively, and the third subscript implies the direction x or y. Further, k

RL
and

k
RB

are the longitudinal and bending wave numbers of the receiver beam respectively.
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The governing equations in frequency domain are described as follows where the
ubiquitous term e+ut is dropped. Here, I
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is the moment of inertia corresponding to a rigid

body source and h is the rigid body location where the isolator is attached. Also, f
y
and q

are harmonic force and moment excitation amplitudes, respectively, at frequency u.

X
RL

(0)"X
RR

(0), >
RL

(0)">
RR

(0), (24a, b)

X
RL

(0)"X
P
(0), >

RL
(0)">

P
(0), (24c, d)

d>
RL

(0)

dx
"

d>
RR

(0)

dx
,

d>
RL

(0)

dx
"!

dX
P
(0)

dy
, (24e, f )

E
R
I
RS C

d3>
RR

(0)

dx3
!

d3>
RL

(0)

dx3 D"S
P
E
P

d>
P
(0)

dy
, (24g)

i
P
S
P
G

P
t
1

1!(k
P
¸

P
)4t

1
t
2
C¸2

P

d3X
P
(0)

dy3
#(k

P
¸

P
)4(t

1
#t

2
)
dX

P
(0)

dy D
"S

R
E
R C

dX
RR

(0)

dx
!

dX
RL

(0)

dx D , (24h)

E
R
I
RS C

d2>
RL

(0)

dx2
!

d2>
RR

(0)

dx2 D"E
P
I
PS C

d2X
P
(0)

dy2
#

t
1

¸2
(k

P
¸)4X

P
(0)D , (24i)

!

i
P
S
P
G

P
t
1

1!(k
P
¸

P
)4t

1
t
2
C¸2

P

d3X
P
(¸

P
)

dy3
#(k

P
¸

P
)4(t

1
#t

2
)
dX

P
(¸

P
)

dy D!mu2X
P
(¸

P
)

!mhu2
dX

P
(¸

P
)

dy
"0, (24j)

!mu2>
P
(¸

P
)#S

P
E
P

d>
P
(¸

P
)

dy
"f

y
, (24k)

!(I
mG

#mh2) u2
dX

P
(¸

P
)

dy
!mhu2X

P
(¸

P
)

#E
P
I
PS C

d2X
P
(¸

P
)

dy2
#

t
1

¸2
(k

P
¸)4X

P
(¸

P
)D"q. (24l)



VIBRATION TRANSMISSION OF ISOLATOR 935
Harmonic responses for each excitation are separately obtained by solving the boundary
conditions (24a}l) in terms of the arbitrary constants A, B, C and D. When the harmonic
force f

y
is applied at the mass center of the rigid body, the steady state responses are

obtained by letting q"0 in equation (24l). Similarly, the right-hand side of (24k) is set to
0 when q is applied at the mass center of rigid body. Internal axial (F ), shear (< ) forces and
moment (M) at interfacial location between an isolator and an in"nite beam receiver are
calculated as follows using the resulting arbitrary constants:

F
R
"S

R
E
R C

dX
RL

(0)

dx
!

dX
RR

(0)

dx D , M
R
"E

R
I
RS C

d2>
RL

(0)

dx2
!

d2>
RR

(0)

dx2 D , (25a, b)

<
R
"!E

R
I
RS C

d3>
RL

(0)

dx3
!

d3>
RR

(0)

dx3 D . (25c)

The time-averaged vibrational power (P) components transmitted to an in"nite beam
receiver are obtained by using the resulting harmonic responses and interfacial forces (F and
<) and moment (M). De"ne P

x
, P

y
and Ph as the lateral (x), axial (y) and rotational (h)

power components, respectively:

P
x
(u)"

1

2
Re[FI (u) vJ H

x
(u)]"

1

2
Re[vJ

x
(u)FI H(u)], (26a)

P
y
(u)"

1

2
Re[<I (u) vJ H

y
(u)]"

1

2
Re[vJ

y
(u)<I H(u)], (26b)

Ph (u)"
1

2
Re[MI (u) wJ H(u)]"

1

2
Re[wJ (u)MI H(u)]. (26c)

Here, v
x
, v

y
and w are the axial (shear direction x for isolator), vertical (axial direction y for

isolator) and rotational (h) velocity amplitudes of the receiver beam respectively. Finally, the
total vibration power transmitted to a receiver beam is

P
Total

(u)"P
x
(u)#P

y
(u)#Ph (u). (27)

Additionally, de"ne the following measures of vibration isolation performance:

C(u)"
P

Total
(u)

P
IN

(u)
, N (u)"

P
Total,With

(u)

P
Total,Without

(u)
, (28a, b)

where P
IN

is the harmonic power supplied to a rigid body source. For force ( f
y
) and

moment (q) excitation cases, we "nd

P
IN

(u)"f
y
ju>

P
(¸

P
), P

IN
(u)"q ju

dX
P
(¸

P
)

dy
. (29a, b)

The governing equations of the system without an isolator are

X
RL

(0)"X
RR

(0), >
RL

(0)">
RR

(0),
d>

RL
(0)

dx
"

d>
RR

(0)

dx
, (30a}c)
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(0)

dx
#S

R
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R C

dX
RL

(0)
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!

dX
RR

(0)

dx D"0, (30d)
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!mu2>
R
(0)#E
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(0)

dx3
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, (30e)

!(I
mG
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RL
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RS C
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(0)

dx2
!

d2>
RR

(0)

dx2 D"q. (30f )

Similar to the system with an isolator, harmonic responses of a receiver beam are obtained
using equations (23a}d). Further, moment, shear force of an in"nite beam and transmitted
power are obtained using equations (25a}c) and (26, 27).

Material properties of the isolator are listed in Table 1. Young's modulus E
P

for a rubber
material is found from the relation E

P
"3G

P
(1#Q¹2), where Q is an empirical constant

and ¹ is the shape factor. For a circular rubber cylinder, Q is 2 and ¹ is equal to 2r/(4¸
P
),

where r and ¸
P

are the radius and length of the isolator beam respectively [4]. Also,
a frequency-invariant loss factor g

P
is included in the calculation with the complex-valued

Young)s modulus as EI
P
"E

P
(1#jg

P
) to incorporate hysteretic damping within the

isolator. Material properties of the receiver beam are, as well as the dimensions of source,
also shown in Table 1. A loss factor g

R
of 0)001 is used to represent a lightly damped

structure and is included in the complex-valued EI
R
. Given the system properties, the e!ects

of shear deformation and rotary inertia of an isolator on the vibration power transmitted to
receiver are examined. Further, the e!ects of isolator material and geometric properties are
investigated.

4.2. EXAMINATION OF ALTERNATE ISOLATOR MODELS

Vibration power transmission to receiver is analyzed up to 4 kHz when a harmonic
moment is applied at the source. The following four alternate isolator models are employed
to describe the #exural vibration power transmitted to an in"nite beam receiver:
Timoshenko beam, Euler beam with shear deformation, Euler beam with rotary inertia and
Euler beam models. Total vibration power (P) transmitted to a receiver beam is shown in
Figure 4 along with the transmission power e$ciency (C) and the e!ectiveness (N) of
vibration power. First, it is observed that rotary inertia does not signi"cantly a!ect the
vibration power transmission below u

T
, that is, around 1)7 kHz. Note that the measures of

Figure 4 based on the Euler beam isolator with rotary inertia are similar to those using the
Euler beam below u

T
. Beyond u

T
, the discrepancies between measures based on those

alternate models are pronounced as frequency increases. Further, it is seen that the Euler
beam model with shear deformation provides a closer representation of the Timoshenko
beam isolator even beyond u

T
even though there exist small disagreements between them.

However, large discrepancies between the Timoshenko beam and Euler beam formulations
without shear deformation are found. Normalized power components with respect to the
total actual power transmitted to the receiver beam are shown in Figure 5. As mentioned
earlier, since each vibration power component is decoupled from the others in total power,
each power component is always positive in this case. Only #exural motions are transmitted
through the mount in this particular example case and therefore only the lateral (shear
direction of the mount) and rotational power components control the total vibration power
transmission. It is observed in Figure 5 that the lateral power component is larger than the
rotational component when the isolator is modelled using the Timoshenko beam or Euler
beam with shear deformation. Also, the total vibration power with the Euler beam isolator
models with and without rotary inertia is almost equally divided into lateral and rotational
components.
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4.3. EFFECT OF ISOLATOR PROPERTIES ON VIBRATION POWER TRANSMISSION

In order to understand the e!ect of isolator properties, it is useful to examine the static
sti!nesses (K

S
) of an isolator. It should be noted that #exural sti!nesses have to be dealt

with in a matrix form since there exist coupling terms between lateral (shear x) and
rotational (h) sti!nesses. The static sti!nesses of a Euler beam are well known and written
here as follows, where the subscript E represents the Euler beam:

C
f

qD"KSE C
X

hD"C
!12EI/¸3 !6EI/¸2

6EI/¸2 2EI/¸ D C
X

hD . (31)

For the static sti!nesses of a Timoshenko beam, the following governing equations are used
for the sake of convenience:

!GSi C
LX2(y)

Ly2
!

Lh
B
(y)

Ly D"w(x), (32a)

GSi C
LX(y)

Ly
!h

B
(y)D#EI

S

L2h
B
(y)

Ly2
"0. (32b)

Here, w(x) is the load intensity function and h
B
is the slope due only to bending of the beam.

Combining the above equations and including the inertia terms yield equation (1) that has
been previously used for the harmonic response. The static sti!nesses of the Timoshenko
beam are obtained by using the singularity function for load intensity and displacement
functions and applying the blocked end boundary condition at one end. The resulting static
sti!ness matrix is as follows, where the subscript ¹ stands for the Timoshenko beam:

C
f

qD"KS¹ C
X

h
B
D"

!

1

¸3/12EI
S
#¸/GSi

!

1

¸2/6EI
S
#2/GSi

1

¸2/6EI
S
#2/GSi

1

¸/3EI
S
#4/GSi¸

!

EI
S

¸

C
X

h
B
D . (33)

From the above equation, the #exural sti!ness terms can be interpreted in terms of
a lumped system that combines the elastic elements due to bending and shear in series.
Further, it is seen that KS¹PKSE when GSiPR in equation (33). Equation (33) is
expanded by using the relationships I

S
"Sr2

g
and G"E/2(1#l), and the KS¹ is rewritten

as follows where K
Sx

, K
Sc

and K
Sh represent the static shear, coupling and rotational

sti!nesses, respectively:

KS¹"C
K

Sx
K

Sc
K

Sc
K

ShD
"

GS

¸

4r2
g
i (1#l)

[i¸2#24(1#l) r2
g
] C

!6 !3¸

3¸ ¸2[1!12(1#l)r2
g
/i¸2]D . (34)

On the other hand, the static axial (y) sti!ness is

K
Sy
"

ES

¸

"

2GS(1#v)

¸

. (35)

Note that G (or E) is common to all sti!ness terms. The system con"guration of section 4.1
is adopted here. Highly damped material with a loss factor of 0)3 is used for this isolator so
that the overall frequency-dependent characteristics are observed without the in#uence of



Figure 4. E!ect of shear deformation and rotary inertia of an isolator on vibration isolation measures with an
in"nite beam receiver given a moment excitation. (a) Total transmitted vibration power P

Total
; (b) e$ciency C for

total transmitted vibration power; (c) e!ectiveness NP for total transmitted vibration power: **, Timoshenko
beam isolator; )))))))))), Euler beam isolator with shear deformation; - - - - - -, Euler beam isolator with rotatory
inertia; } - } - } -, Euler beam isolator.
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isolator resonances. Results for C are shown in Figure 6(a) for a variation in G values for an
isolator when a harmonic moment is applied to the mass center of a rigid body source. It is
observed in Figure 6(a) that C rises due to an increase in G as the frequency increases. Next,



Figure 5. Normalized components of the total power transmitted to the in"nite beam given a moment
excitation. (a) Timoshenko beam isolator; (b) Euler beam isolator with shear deformation; (c) Euler beam isolator
rotary inertia; (d) Euler beam isolator: - - - - -, axial (y); **, rotational (h); } - } - } -, lateral (x).
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C is shown in Figure 6(b) when the isolator is modelled by a Euler beam. Similar to
Figure 6(a), C rises as G increases. However, observe that the spectra of Figure 6(b) tend to
stay almost #at as the frequency increases but those of Figure 6(a) for the Timoshenko beam
model decrease as the frequency increases. This is because the rotational power component
is dominant for the system with a Euler beam isolator and the real part of the rotational
mobility for receiver beam increases with frequency. The power e$ciency is also shown in
Figure 6(c) when a harmonic force ( f

y
) is applied to the mass center of a source. In this case,

only axial sti!ness of the mount a!ects vibration power transmission. Like the moment
application case, C grows with G as the frequency increases. Also, note that the C spectra of
Figure 6(c) for the axial power transmission are closer to unity at low frequencies unlike
those of Figures 6(a, b) for the #exural power transmission. Normalized power components
with respect to the total actual power transmitted to the receiver beam are also shown in
Figures 7(a}c) for the shear modulus variation along with absolute power components in
Figure 7(d) with the baseline G value. As discussed previously, axial and coupling power
components do not exist in this case and therefore the sum of the normalized lateral (shear
direction of mount) and rotational power components is equal to unity. Overall, the lateral
power component is larger than the rotational component. It is shown in Figures 7(b, d)
that the lateral component dominates.

Commonly, designers specify mounts in terms of lumped sti!ness elements rather than
continuous system properties. Therefore, the following static sti!ness ratios (a) are de"ned.



Figure 6. E!ect of shear modulus G of an isolator beam on e$ciency (C ) with an in"nite beam receiver. (a) For
a Timoshenko beam isolator model; (b) for an Euler beam isolator model given a moment excitation; (c) given
a force excitation f

y
: } - } - } -, 0)5G; **, G; - - - - -, 2G.
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Here, each ratio is normalized with respect to the axial component:

a
xy
"

K
Sx

K
Sy

, a
cy
"

K
Sc

K
Sy

, ahy"
K

Sh
K

Sy

, (36a}c)



Figure 7. Vibration transmitted to the in"nite beam given a moment excitation. (a) Normalized power for 0)5G;
(b) normalized power for G; (c) normalized power for 2G; (d) power in W for G: - - - - -, axial (y);**, rotational (h);
} - } - } -, lateral (x).
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where a
xy

, a
cy

and ahy are the ratios of shear, coupling and rotational sti!ness components to
the axial sti!ness respectively. For a cylindrical isolator, the static #exural sti!nesses of
equation (34) are represented in terms of the static axial sti!ness (K

Sy
) as follows by using

equations (34) and (35):

KS¹"
iK2

Sy
4(1#l)[nGi¸#3K

Sy
] C

!6 !3¸

3¸ ¸2[1!3K
Sy

/2ni¸G]D . (37)

Key parameters include the slenderness ratio (S/¸), material properties (G and l) and K
Sy

.
In this case, it is observed from equation (37) that the #exural sti!nesses change when ¸ is
varied proportionally to S, unlike the K

Sy
value. Note that this behavior is also true for the

Euler beam case. Note that a
xy

decreases but both a
cy

and ahy increase as the ¸ or S value
increases, while holding S/¸, G and l. The e!ects of a

xy
on e$ciency (C) are examined in

Figure 8 for the case when¸ proportionally varies with S. Figure 8(a) shows that C increases
as a

xy
increases at higher frequencies when a harmonic moment is applied at the mass center

of a source. Similar to the previous case, C with an isolator modelled by a Euler beam is
shown in Figure 8(b). Unlike the system with a Timoshenko beam isolator, C decreases as
a
xy

increases at higher frequencies. Note that the minimum value of a
xy

produces the best
vibration isolation (hence the lowest C ) for a system with a Timoshenko beam isolator as
shown in Figure 8(a). Therefore, shear deformation and rotary inertia play important roles



Figure 8. E!ect of a
xy

(ratio of shear to axial components of static sti!ness) of an isolator beam on e$ciency (C)
with an in"nite beam receiver. (a) For a Timoshenko beam isolator model given a moment excitation; (b) for
a Euler beam isolator model given a moment excitation; (c) given a force excitation f

y
: } - } - } -, 0)7a

xy
; **, a

xy
;

- - - - -, 1)3a
xy

.
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in in#uencing isolation measures. The C spectra are shown in Figure 8(c) when a harmonic
force ( f

y
) is applied to a source. Note that K

Sy
is the only component that a!ects the power

transmission and K
Sy

is unchanged as a
xy

is varied in this case. As expected, C remains



Figure 9. Vibration transmitted to the in"nite beam given a moment excitation. (a) Normalized power for
0)7a

xy
; (b) normalized power for a

xy
; (c) normalized power for 1)3a

xy
; (d) power in W for 0)7a

xy
: - - - - -, axial (y);**,

rotational (h); } - } - } -, lateral (x).
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unchanged for the a
xy

variations at lower frequencies. However, it is observed in Figure 8(c)
that C increases as a

xy
increases at higher frequencies. Similar to the previous case, vibration

power components are calculated in Figure 9. The dominance of lateral and rotational
power components changes at a certain frequency for the lowest a

xy
value as shown in

Figures 9(a, d) for both normalized and absolute powers respectively. Observe that for the
lowest a

xy
value case the rotational power component is dominant at lower frequencies and

continues to dominate up to the mid-frequency regime where the lateral component is
important. However, the lateral component becomes more signi"cant when a

xy
is increased

and the rotational component is negligible for the highest a
xy

case. Next, the e!ects of the
isolator shape on isolation measures are examined. The shape factor (b) of an isolator is
de"ned as b"¸/d. Note that an increase in b reduces the static #exural and axial sti!nesses
as seen from equations (34) and (35). Results are shown in Figure 10. The C value decreases
at higher frequencies as b increases for both the Timoshenko and Euler beam isolator
models when a moment is applied. Similar to the moment excitation case, C decreases at
higher frequencies as b increases for a force ( f

y
) excitation case as shown in Figure 10(c).

Normalized and absolute vibration power components are also shown in Figure 11 for the
lowest b case. Like the previous cases, the lateral component is larger than the rotational
component over all the frequencies. However, the rotational component becomes more
important at lower and higher frequencies as b is increased.



Figure 10. E!ect of isolator shape factor b on e$ciency (C) with an in"nite beam receiver. (a) For a Timoshenko
beam isolator model given a moment excitation; (b) for a Euler beam isolator model given a moment excitation;
(c) given a force excitation f

y
: } - } - } -, 0)5b; **, b; - - - - -, 2b.

944 S. KIM AND R. SINGH
5. VIBRATION POWER TRANSMITTED TO A FINITE BEAM RECEIVER

A "nite beam receiver (with clamped ends) is employed to examine the vibration
transmission through the isolator for a system of Figure 1(a). Similar to the system with an



Figure 11. Vibration transmitted to the in"nite beam given a moment excitation. (a) Normalized power for 0)5b;
(b) normalized power for b; (c) normalized power for 2b; (d) power in W for 0)5b: - - - - -, axial (y);**, rotational
(h); } - } - } -, lateral (x).
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in"nite beam receiver, the Timoshenko beam model and its subsets represent #exural
motion of an isolator along with the wave equation for longitudinal motion. Harmonic
responses for axial (x) and #exural (y) motions of the receiver beam are, respectively, as
follows using the notations of section 4.1:

XM
RL

(x, t)"X
RL

(x) e+ut"[A
RLx

e~+kRLx#B
RLx

e+kRLx] e+ut, (38a)

XM
RR

(x, t)"X
RR

(x) ejut"[A
RRx

e~+kRLx#B
RRx

e+kRLx] e+ut, (38b)

>M
RL

(x, t)">
RL

(x) e+ut"MA
RLy

e~+*kRBx+#B
RLy

e~*kRBx+#C
RLy

e+*kRBx+#D
RLy

e*kRBx+Ne+ut,

(38c)

>M
RR

(x, t)">
RR

(x) e+ut"MA
RRy

e~+*kRBx+#B
RRy

e~*kRBx+#C
RRy

e+*kRBx+#D
RRy

e*kRBx+Ne+ut.

(38d)

The harmonic responses for the isolator are still given by equations (22a, b). The arbitrary
constants of the harmonic responses are obtained by solving the following governing
equations in addition to equations (24a}l), where ¸

R
is the total length of the receiver beam

and ¸
RI

is the length between one clamped end and the junction of receiver and isolator:

X
RL

(!¸
RI

)"0, X
RR

(¸
R
!¸

RI
)"0, (39a, b)
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>
RL

(!¸
RI

)"0, >
RR

(¸
R
!¸

RI
)"0, (39c, d)

d>
RL

(!¸
RI

)

dx
"0,

d>
RR

(¸
R
!¸

RI
)

dx
"0. (39e, f )

Finally, P
Total

, C and N are obtained by using equations (25}28) and the resulting harmonic
responses, like the in"nite beam receiver calculation. An isolator connected to a rigid body
source at one end is assumed to be located o!-center (¸

RI
"3¸

R
/4) of the receiver beam in

order to incorporate the e!ect of coupling mobility of the receiver beam. Note that such
a coupling mobility does not exist for both centrally driven beam (with both ends clamped)
and an in"nite beam.

Figure 12 shows the P
Total

, C and N for a system with various Timoshenko beam models.
Results are given in terms of 1/3 octave band center frequencies from 20 to 4000 Hz and
only the mean values within each bandwidth are plotted in Figure 12 and similarly in
Figures 13}15. Similar to the system with an in"nite beam receiver, the Euler beam isolator
with shear deformation well represents the Timoshenko beam model except for the
frequencies around 2)5 kHz. Further, three isolation measures for the Euler beam isolator
with rotary inertia are similar to those with the Euler beam isolator at frequencies less than
u

T
. But discrepancies between the Euler beam isolator models that include or exclude

rotary inertia are pronounced as the frequency increases. However, it is observed from
Figure 12 that the Euler beam isolator models without shear deformation show large
deviations from those with shear deformation. The aforementioned behavior is analogous
to the results observed for the in"nite beam receiver. The e!ects of G of a Timoshenko beam
isolator on C are shown in Figure 13(a) when a moment is applied at a source. Like the
in"nite beam receiver case, C increases especially at higher frequencies as G of an isolator
increases. However, the deviation from the aforementioned behavior is observed at certain
frequencies (around 2 kHz) due to the coupling mobility and resonances of the receiver
beam. Figure 13(b) shows the C spectra with the Euler beam isolator for a moment
excitation case. Again, C rises with G, but the increases in C are not as much as those
with the Timoshenko beam isolator. Like the system with an in"nite beam receiver, C
f the isolator in Figure 13(b) grows as the frequency increases. But C of the Timoshenko
beam isolator shows the relatively #at spectra over the frequencies as shown in
Figure 13(a). When a force f

y
is applied to a source, C increases as G increases as shown in

Figure 13(c). Unlike the case of an in"nite beam receiver, C is not closer to unity at low
frequencies.

Next, the e!ect of a
xy

is examined while holding the slenderness and material properties of
the mount. Results are shown in Figure 14 for a moment excitation case. Similar to the
in"nite beam receiver case, C increases at higher frequencies as a

xy
of the Timoshenko beam

isolator increases as shown in Figure 14(a). However, the di!erences in C between the
higher a

xy
values are not signi"cant for the Euler beam isolator as shown in Figure 14(b).

This observation implies that the a
xy

in#uences the shear deformation e!ect of an isolator.
Despite the small di!erences, Figure 14(b) shows that C decreases at higher frequencies as
a
xy

increases for the Euler beam isolator case, like the system with an in"nite beam receiver.
In addition, C is shown in Figure 14(c) when a force f

y
is applied and observe that

C increases at higher frequencies as a
xy

increases like the moment excitation case even
though the static axial sti!ness (K

Sx
) plays a major role in this force excitation case;

K
Sx

remains unchanged for all a
xy

variations. Note that C remains unchanged up to
a certain frequency (around 800 Hz in this case) as a

xy
is varied, as shown in Figure 14(c).

Finally, the e!ects of b on C are examined in Figure 15. Similar to the in"nite beam receiver
case, an increase in b decreases C for both moment and force excitation cases.



Figure 12. E!ect of shear deformation and rotary inertia of an isolator on vibration isolation measures with
a "nite beam receiver given a moment excitation. (a) Total transmitted vibration power P

Total
; (b) e$ciency C for

total transmitted vibration power; (c) e!ectiveness NP for total transmitted vibration power: **, Timoshenko
beam isolator; ))))))))), Euler beam isolator with shear deformation; - - - - -, Euler beam isolator with rotatory inertia;
} - } - } -, Euler beam isolator. Results are given in terms of 1/3 octave band center frequencies from 20 to 4000 Hz
and only the mean values within each bandwidth are plotted here and in Figures 13}15.
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Figure 13. E!ect of isolator G on e$ciency (C) with a "nite beam receiver. (a) For a Timoshenko beam isolator
model given a moment excitation; (b) for a Euler beam isolator model given a moment excitation; (c) given a force
excitation f

y
: } - } - } -, 0)5G; **, G; - - - - -, 2G.
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6. CONCLUSION

The chief contribution of this paper is the application of continuous system theory to an
elastomeric isolator and the examination of associated #exural and longitudinal motions of



Figure 14. E!ect of isolator a
xy

on e$ciency (C) with a "nite beam receiver. (a) For a Timoshenko beam isolator
model given a moment excitation; (b) for a Euler beam isolator model given a moment excitation; (c) given a force
excitation f

y
: } - } - } -, 0)3a

xy
; **, a

xy
; - - - - -, 1)3a

xy
.
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the source}path}receiver system. Two di!erent frequency response characteristics of an
elastomeric isolator are predicted by the Timoshenko beam theory. The second type
solution, that has been previously believed to occur at extremely high frequencies (say



Figure 15. E!ect of isolator shape factor b on e$ciency (C) with a "nite beam receiver. (a) For a Timoshenko
beam isolator model given a moment excitation; (b) for a Euler beam isolator model given a moment excitation;
(c) given a force excitation f

y
: } - } - } -, 0)5b; **, b; - - - - -, 2b.
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around 80 kHz) for metallic structures and therefore not of interest in structural dynamics,
takes place at relatively low frequencies (say around 1)5 kHz) for a rubber-like material. The
behavior of a typical vibration isolation system has been examined using the power
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transmitted to an in"nite beam or a "nite beam receiver, when excited by a harmonic
moment or force at the source. The continuous system analysis clearly shows that the shear
deformation and rotary inertia must be considered in order to properly describe the
transmission of #exural motions at higher frequencies. In particular, the shear deformation
e!ect is found to be more pronounced than the role of the rotary inertia, as evaluated by the
power-based vibration isolation measures at higher frequencies. Parametric study of
isolator parameters on the transmission measures has been conducted using the
Timoshenko beam isolator model and an in"nite beam receiver. Material and geometric
parameters of an isolator have been examined along with the static sti!ness ratios (between
K

Sy
, K

Sx
and K

Sh components). The vibration power e$ciency, e!ectiveness and power
transmitted to an in"nite beam structure increase with frequency as the isolator shear
modulus increases. Resulting characteristics for a system with a "nite beam receiver con"rm
the trends.

Future work is required to quantify the vibration source in terms of power transmission.
Future analysis must also incorporate the e!ect of compliant sources for a single or
a multi-isolator system on the vibration power transmission. Further, an experimental
investigation is needed to con"rm the phenomena identi"ed in this article. Proper
interpretation of various vibration isolation measures for a multi-dimensional system, such
as power e$ciency and e!ectiveness, must also be sought over a broad range of frequencies.
Finally, non-linear e!ects of an isolator should be examined.
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APPENDIX A: NOMENCLATURE

A, B, C, D arbitrary constants
b width
d diameter
E Young's modulus
f force amplitude
F axial force
G shear modulus
h distance between rigid body center and mount interface
I
S

area moment of inertia
I
m

mass moment of inertia
j J!1
k wave number
K sti!ness
K sti!ness matrix
¸ length
m mass
M moment
q moment amplitude
Q empirical constant for rubber material
r radius
r
g

radius of gyration
R variable for root transition
S area
t thickness
¹ shape factor for rubber material
v translational velocity
< shear force
w load intensity function
w rotational velocity
X displacement in x direction
> displacement in y direction
x, y, z Cartesian co-ordinates
a static sti!ness ratio
b shape factor of isolator (¸/d)
C e$ciency of vibration power
g loss factor
h rotational displacement
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i shear constant
j root of di!erential equation
l the Poisson ratio
m non-dimensionalized co-ordinate
N e!ectiveness of vibration power
P vibration power (time-averaged)
o mass density
s, e, k, q, t parameters for Timoshenko beam
u frequency, rad/s
u

T
transition frequency, rad/s

Subscripts

B bending
c coupling
E Euler beam
G mass center
IN input
¸ axial or longitudinal motion
P isolator (path)
R receiver
RI interfacial location of receiver beam with isolator
R¸ left-travelling wave in receiver
RR right-travelling wave in receiver
S static
¹ Timoshenko beam or transition frequency
¹otal sum of power components transmitted to receiver
with with isolator
without without isolator
x, y, z Cartesian co-ordinates
0, ¸ beam locations
h rotational

Superscripts

& complex valued
* complex conjugate
! function of time and spatial co-ordinates

Operators

Re real part
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